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A CONSTRUCTION METHOD FOR TRIPLY PERIODIC MINIMAL
SURFACES

SHOICHI FUJIMORI AND MATTHIAS WEBER

Abstract. A uniform and elementary treatment of many classical and new em-
bedded triply periodic minimal surfaces in Euclidean space, based on a Schwarz-
Christoffel formula for periodic polygons in the plane, is given.

Introduction

A triply periodic minimal surface is a minimally immersed surface in Euclidean 3-
space R3 which is invariant under translations in three independent directions (the three
translations generate a lattice Λ in R3).

Throughout this article, we assume triply periodic minimal surfaces to be non-flat and
properly embedded.

In the nineteenth century, H. A. Schwarz and his students found five triply periodic
minimal surfaces [Schw, Neo]. See Figure 1.

In 1970, A. Schoen described twelve more examples [Scho]. The pictures of his exam-
ples can be found in the web pages [Br, We].

In 1989, H. Karcher proved the existence of Schoen’s surface and found more examples,
using the conjugate surface method [Ka1]. See also [Ka2, KaPo].

Since then, a vast numbers of examples have been found by many people [FiKo1,
FiKo2, Hu, Me, Ram, Tr1, Tr2].

In a recent work, the authors gave a construction method for embedded triply periodic
minimal surfaces [FuWe]. These surfaces share the property that vertical symmetry
planes cut them into simply connected pieces. The Weierstrass representation of these
surfaces can be given in terms of a Schwarz-Christoffel formula for periodic Euclidean
polygons, using ϑ-functions on suitable tori.

In this article, we briefly introduce this construction method and give examples of
embedded triply periodic minimal surfaces. We do not give any proofs here, so for
details, see [FuWe].
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Schwarz P Schwarz D Schwarz CLP

Schwarz H Neovius

Figure 1. Classical examples of triply periodic minimal surfaces.

A triply periodic minimal surface can be considered as a minimal embedding from a
compact Riemann surface of genus g ≥ 3 into a flat 3-torus R3/Λ.

Table 1 shows the genus of the triply periodic minimal surfaces known to Schwarz and
Schoen.

Name Genus Name Genus Name Genus
Schwarz P 3 Schwarz D 3 Schwarz CLP 3
Schwarz H Neovius
(Schoen RI)

3
(Schoen C(P))

9

Gyroid 3 Schoen H’-T 4 Schoen S’-S” 4
Schoen I-WP 4 Schoen H”-R 5 Schoen T’-R’ 6
Schoen F-RD 6 Schoen C(H) 7 Schoen RII 9
Schoen O,C-TO 10 Schoen RIII 13 Schoen C(D) 19

Table 1. Genus of Schwarz and Schoen’s surfaces.

Our construction method consists of the following 2 steps:
Step 1 We construct a minimal embedding defined on a parallel strip with the following

properties:
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• it is bounded by a vertical prism over a triangle with angles π/r, π/s and
π/t, where (r, s, t) ∈ {(2, 3, 6), (2, 4, 4), (3, 3, 3)},

• the boundary curves lie on the prism,
• it intersects the prism orthogonally,
• it is invariant under a vertical translation.

Step 2 We repeat reflection with respect to a vertical plane of the prism suitably many
times.

To construct a surface satisfying the above properties, we use an equivariant Schwarz-
Christoffel formula.

In the next section we will discuss about this.

1. An equivariant Schwarz-Christoffel formula

In this section, we will introduce an equivariant version of the classical Schwarz-
Christoffel formula for periodic polygons.

The classical Schwarz-Christoffel mapping is a biholomorphic mapping from the upper
half-plane into a polygon. It can be explicitly written down the following formula:

f(z) =
∫ z m∏

i=1

(z − pi)aidz,

where pi ∈ R ∪ {∞} and f(pi) correspond to the vertices of the polygon with angles
(ai + 1)π. See [Neh] for details.

Instead of the monomial factors z− pi of the classical Schwarz-Christoffel formula, we
will use ϑ-factors ϑ(z − pi), where

ϑ(z) = ϑ(z, τ) =
∞∑

n=−∞
eπi(n+ 1

2 )2τ+2πi(n+ 1
2 )(z− 1

2 )

is one of the classical Jacobi ϑ-functions [Mu]. It is an entire function with simple zeroes
at the lattice points of the integer lattice spanned by 1 and τ . It satisfies the following
symmetries:

ϑ(−z) = −ϑ(z), ϑ(z + 1) = −ϑ(z), ϑ(z + τ) = −e−πiτ−2πizϑ(z).

Furthermore, ϑ(z̄) = ϑ(z) if τ ∈ iR.

Definition 1. A periodic polygon P is a simply connected domain in the plane C with
the following properties:

• P is bounded by two infinite-length piecewise linear curves with discrete vertex
sets,

• P is invariant under a Euclidean translation V (z) = z + v for some v ∈ C− {0},
• The quotient P/⟨V ⟩ is conformally an annulus.

See Figure 2.

We denote the vertices of the two boundary curves by Pi and Qj so that V (Pi) = Pi+m

and V (Qj) = Qj+n for all i, j and fixed integers m,n. Denote the interior angles of the
polygon at Pi (resp. Qj) by αi (resp. βj). By assumption, these numbers are also
periodic with respect to m and n, respectively.
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Figure 2. A periodic polygon

Because both boundary curves are invariant under a translation, we see that
m∑

i=1

(π − αi) = 0 =
n∑

j=1

(π − βj). (1)

Let P be a periodic polygon invariant under V . Let d/2 be the modulus of the annulus
P/⟨V ⟩, and define the strip Z = {z ∈ C : 0 < Im z < d/2}. The choice of d makes the
annuli Z/⟨h⟩ and P/⟨V ⟩ conformally equivalent, and d > 0 is uniquely determined this
way, where h : Z → Z is defined by h(z) = z + 1. Moreover, we obtain a biholomorphic
map f : Z → P which is equivariant with respect to both translations, that is, the
following diagram is commutative:

Z
f−−−−→ P

h

y yV

Z
f−−−−→ P

This map extends to a homeomorphism between the closures of Z and P . In comparison
to the classical Schwarz-Christoffel formula, Z will play the role of the upper half plane.

Proposition 2 ([FuWe, Proposition 2.3]). Let P be a periodic polygon, and Z be the
associated parallel strip as above. Then, up to scaling, rotating, and translating,

f(z) =
∫ z m∏

i=1

ϑ(z − pi)
ai ·

n∏
j=1

ϑ(z − qj)
bj dz

is the biholomorphic map from Z to P . Conversely, for any choices of pi ∈ R (1 ≤ i ≤ m),
qj ∈ R + di/2 (1 ≤ j ≤ n) and −1 < ai, bj < 1 satisfying the angle condition

m∑
i=1

ai = 0 =
n∑

j=1

bj , (2)

f maps Z to a periodic polygon.
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2. Minimal surfaces defined on parallel strips

In this section we construct a minimal surface which satisfies the properties of Step 1
as in the introduction. The Weierstrass data can be given by the integrands of our
Schwarz-Christoffel formula.

Any conformally parametrized minimal surface in R3 can locally be given by the
Weierstrass representation

z 7→ Re
∫ z (

1
2

(
1
G

− G

)
,

i

2

(
1
G

+ G

)
, 1

)
dh,

where G is a meromorphic function and dh is a holomorphic 1-form. G can be identified
with the Gauss map of the surface via the stereographic projection, and dh is called the
height differential of the surface. The pair (G, dh) is called the Weierstrass data of the
minimal surface.

For a positive real number d, let Z = {z ∈ C : 0 < Im z < d/2} be a strip domain.
For m, n,≥ 0 consider points pi ∈ (0, 1), i = 1, . . . , m and qj ∈ (0, 1)+τ/2, j = 1, . . . , n.

Extend these to periodic sets of points by imposing the condition pi+m = pi + 1, qj+n =
qj + 1 for all i, j.

Consider the minimal surface defined on Z by the Weierstrass data

G(z) =
m∏

i=1

ϑ(z − pi)
ai ·

n∏
j=1

ϑ(z − qj)
bj , and dh = dz.

For the exponents we assume that −1 < ai, bj < 1 for all i, j (this ensures that
all interior angles of the Schwarz-Christoffel polygons are between 0 and 2π). We also
assume the angle condition (2). Then we have:

Proposition 3 ([FuWe, Proposition 3.1]). The minimal surface with the above Weier-
strass data is a simply connected minimal surface with two boundary components lying
in a finite number of vertical symmetry planes. These planes meet at angles πai at the
image of pi and πbj at the image of qj. Furthermore, the surface is invariant under the
vertical translation x3 7→ x3 + 1.

Definition 4. For an interval [pi, pi+1] or [qj , qj+1], we denote the vertical symmetry
plane in which the corresponding planar symmetry curve lies by Π[pi,pi+1] or Π[qj ,qj+1].
We orient these planes by insisting that their normal vector points away from the minimal
surface.

3. The Basic Examples

The simplest example of a periodic polygon has just two vertices along one edge and
none along the other, that is, m = 2 and n = 0. We will now discuss the resulting minimal
surface. By translating Z, we can assume that p1 = −p and p2 = +p. Furthermore, by
the angle condition (2), a1 = a = −a2. Thus the Gauss map is given by

G(z) =
(

ϑ(z − p)
ϑ(z + p)

)a

for some 0 < a < 1.



84 S. FUJIMORI AND M. WEBER

With this normalization, the minimal surface becomes symmetric with respect to a
reflection at the imaginary axis in the domain which corresponds to a reflection at a
horizontal plane in space, which we can assume to be the x1x2-plane.

By Proposition 3, the minimal surface has two boundary arcs. The one corresponding
to Im z = Im τ/2 lies in a single coordinate plane Π, while the other switches between
coordinate planes Π[−p,p] and Π[p,−p], making an angle aπ. The angle between Π and
Π[−p,p] can be computed by the following formula:

Proposition 5 ([FuWe, Proposition 4.1]). The angle α0 between Π[−p,+p] and Π is equal
to

α0 = πa(2p − 1).

Our goal is to obtain a triply periodic surface from this minimal surface by repeated
reflections at the three symmetry planes. In order for the surface to be embedded, the
group generated by these reflection must be a Euclidean triangle group.

There are three such groups, denoted by ∆(2, 3, 6), ∆(2, 4, 4), and ∆(3, 3, 3), where
∆(r, s, t) corresponds to the group generated by reflecting at the edges of a triangle with
angles π/r, π/s, and π/t. We assign a specific such triangle group to Σ as follows:

The angle at +p is to be π/r, the angle between Π[−p,p] and Π equals π/s, and the
angle between Π[p,−p] and Π shall be π/t. By Proposition 3, the first condition forces

a =
r − 1

r
,

while the second determines
p =

−r − s + rs

2(r − 1)s
by Proposition 5.

This allows for 10 possibilities. However, due to the reflectional symmetry at the x1x2-
plane, any surface corresponding to ∆(r, s, t) becomes one corresponding to ∆(r, t, s), by
turning it upside down. Thus there are only 6 distinct cases. They all correspond to
surfaces known to Schwarz [Schw] or Schoen [Scho]. See Figure 3.

The following table lists all cases with the naming convention of Schoen, as well as
the value of p and their genus.

Name (r, s, t) p genus
Schwarz P (2,4,4) 1/4 3
Schoen H’-T (2,6,3) 1/3 4
Schoen H’-T (2,3,6) 1/6 4
Schwarz H (3,3,3) 1/4 3
Schoen H”-R (3,2,6) 1/8 5
Schoen H”-R (3,6,2) 3/8 5
Schoen S’-S” (4,4,2) 1/3 4
Schoen S’-S” (4,2,4) 1/6 4
Schoen T’-R (6,2,3) 1/5 6
Schoen T’-R (6,3,2) 3/10 6

All these surfaces come in a 1-parameter family where τ ∈ iR+ is the parameter.

Remark 6. To compute the genus of surfaces, we first observe that

G(z + 1) = G(z) and G(z + τ) = e4πiapG(z).
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(2,4,4) (3,3,3) (2,3,6)

(3,2,6) (4,2,4) (6,2,3)

Figure 3. The basic examples.

Thus, for instance, in the (2,4,4)-surface case, we see that

G(z + 1)2 = G(z)2 and G(z + 2τ)2 = G(z)2

and hence G is well-defined on the double covering of the torus C/⟨1, 2τ⟩ with four
branch points at ±p and ±p + τ . Since each branch point has the branch order one, the
Riemann-Hurwitz formula yields that the Riemann surface in which the Weierstrass data
are well-defined on is of genus 3.

4. The next least complicated case

The next least complicated case after the basic case with two corners allows for four
corners. We assume that the surface is symmetric with respect to the x1x2-plane. We
can assume that this reflection is realized in the domain by a reflection at the imaginary
axis.

Four corners can either lie in a single boundary component, or be divided into two
corners for each component. However, the only possibility of the first case is an (un-
branched) double cover over our basic examples by doubling the vertical period. See
Section 6 of [FuWe].

So in this section we will discuss the second case, that is, we will discuss symmetric
polygons where each boundary component has just two corners, that is, m = n = 2.

Without loss of generality we can assume that p1 = p = −p2 ∈ (0, 1/2) and q1 = q =
−q2 ∈ (0, 1/2) + τ/2. We denote a1 = a = −a2 and b1 = b = −b2. Then the Gauss map
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is given by

G(z) =
(

ϑ(z − p)
ϑ(z + p)

)a (
ϑ(z − q)
ϑ(z + q̄)

)b

.

There are two qualitatively distinct cases, depending on whether a and b have the
same or opposite signs.

4.1. Exponents have equal signs. Without loss of generality, we can assume that
a, b < 0.

In this case, projecting the two boundary arcs into the x1x2-plane gives two “hinges”
with angles πa and πb. We denote the hinge containing the image of p by Hp, and the
hinge containing q by Hq.

We want these hinges to be part of our reflection group triangles. This requires a and
b to be of the form a = −(r − 1)/r and b = −(s − 1)/s with r, s ∈ {2, 3, 4, 6}.

As the hinges have four edges all together, two of these edges must lie on one side of
a reflection group triangle. By relabeling the vertices, if necessary, we can thus assume
that the planes Π[−p,p] and Π[−q,q] are parallel. We have the following:

Proposition 7 ([FuWe, Proposition 5.1]).

a(2p − 1) + b(2Re(q) − 1) = 1. (3)

This constraint between p and q guarantees that the planes Π[−p,p] and Π[−q,q] are
parallel, but we need them to be equal. The following theorem shows that we can always
adjust p to make this happen:

Theorem 8 ([FuWe, Theorem 7.1]). For any τ ∈ iR+ and −1 < a, b < 0, there exist
0 < p, Re(q) < 1/2 so that the two hinges Hp and Hq line up as a triangle.

Idea of the proof. We fix τ ∈ iR+ and −1 < a, b < 0. Then by (3), we have one free
parameter p. To show the theorem, we have to adjust p so that the period problem is
solved. We define a function Φ on Z as follows:

Φ(z) =
∫ z

Gdh.

Then the period condition is equivalent to that the image edges Φ([−p, p]) and Φ([−q, q])
are to be collinear.

Since the limit situations (p → 0 and q → τ/2) can be analyzed explicitly, an interme-
diate value argument yields the existence of p so that the period problem is solved. �

The following table lists all possibilities of admissible angle combinations, except the
cases of equal angles (that is, r = s = 3 or r = s = 4). These cases reduce to the
(r, 2, t) cases of Section 3, because the two hinges become symmetric, each being part of
a (r, 2, t)-triangle.

r s Relation between p and q genus
2 3 6p + 8Re(q) = 1 8
2 4 4p + 6Re(q) = 1 6
3 6 8p + 10Re(q) = 3 10
6 2 5p + 3Re(q) = 1 9
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There is a more intuitive way to understand the resulting surfaces geometrically,
namely as superpositioning two of the basic cases with the same underlying triangle
group on top of each other. For instance, the (2, 4, 4)-surface (aka Schwarz P) and the
(4, 4, 2)-surface (aka Schoen S’-S”) from the basic case family can be combined into the
(2, 4, 4)-surface of the current family. See Figure 4.

(2,4,4) (2,3,6)

(3,2,6) (6,2,3)

Figure 4. Four corners case: equal exponents.

4.2. Exponents have opposite signs. Without loss of generality, we can assume that
a < 0 and b > 0.

In this case, the two hinges arrange themselves above each other and need to be
matched up so that two edges are parallel and of the same length.

We normalize the divisors such that the edges [−p, p] and [q, 1− q] are to be matched.
Let a = −(r − 1)/r and b = (s − 1)/s.

This implies that we need the angle α0 between Π[−p,p] and Π[−q,q] to be equal to π/s.
We have the following constraint:

Proposition 9 ([FuWe, Proposition 5.1]).

a(2p − 1) + b(2Re(q) − 1) =
1
s
.

Again, all combinatorially possible cases are listed in the table below. Two of the
cases have been discovered earlier by Schoen (I-WP) and Karcher (T-WP). These are
particularly simple in that r = s. This allows for more symmetric solutions to the period
problem with −p + Re(q) = 1/(2(r − 1)). This results in horizontal straight lines on
the surfaces, namely as images of the vertical lines through p, q and −p,−q. Thus, the
period problem is solved automatically. For these two cases, our construction method
gives the double cover of the surfaces. Thus if we compute the genus of (r, s) = (4, 4)
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case (resp. (r, s) = (3, 3) case), we see that it has genus 7 (resp. genus 5), but the actual
I-WP surface (resp. T-WP surface) has genus 4 (resp. genus 3).

The other four surfaces are probably new.
Name r s Relation between p and q g

2 3 6p − 8Re(q) = −3 8
2 4 2p − 3Re(q) = −1 6
3 6 4p − 5Re(q) = −1 10
6 2 10p − 6Re(q) = −1 9

Schoen I-WP 4 4 6p = 3Re(q) = 1 7 (4)
Karcher T-WP 3 3 24p = 8Re(q) = 3 5 (3)

There is also a more intuitive way to understand the resulting surfaces geometrically,
namely as vertically stacking two of the basic cases with the same underlying triangle
group on top of each other. For instance, the (2, 4, 4)-surface (aka Schwarz P) and the
(4, 4, 2)-surface (aka Schoen S’-S”) from the basic case family can be combined into the
(2, 4, 4)-surface of the current family. See Figure 5.

(2,4,4) (2,3,6) (3,3,3)

(3,2,6) (6,2,3) (4,2,4)

Figure 5. Four corners case: opposite exponents.

Note that any solution pair (p, q) to the period problem is isometric to (1/2−p, 1/2−q)
by shifting the divisor by 1/2 and taking the reciprocal. The constraint equation will be
slightly different then.
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The following period problem can be solved using an extremal length argument.

Theorem 10 ([FuWe, Theorem 7.2]). For any −1 < a < 0 and 0 < b < 1, there is a
1-parameter family of values of any τ ∈ iR+ such that the union of the hinges Hp and
Hq forms a triangle.

5. Higher Genus

Our method can be used to create many further examples of triply periodic mini-
mal surfaces, by adding corners to the periodic polygons. This, however, also increases
the dimension of the period problem. While there are methods available to solve such
problems, it does not appear to be worth the effort at this point.

We briefly discuss one more case which give examples of higher genus surfaces, which
are related to surfaces that have been discussed in the literature.

We again assume the reflectional family about the x1x2-plane. The lower edge is to
have two corners at ±p, while we assume four corners in the upper edge at ±q1 + τ/2
and ±q2 + τ/2. We label the exponents at p, q1, q2 as a, b1, b2.

We define the exponents by

a =
1
r
− 1 < 0, b1 = 1 − 1

s
> 0, b2 = 1 − 1

t
> 0.

In the case (r, s, t) = (2, 4, 4), we obtain Neovius surface (in the case of full cubic
symmetry, [Neo]). Also, in the case (r, s, t) = (3, 3, 3), we obtain Schoen C(H) surface
[Scho]. See also [Hu]. These two cases allow for an additional symmetry with p = 1/4
and q1 + q2 = 1/2, which renders the period problem 1-dimensional.

All other cases require to solve a 2-dimensional period problem, and lead to 1-parameter
families, whose existence we have established numerically. See Figure 6.
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